Bone marrow mesenchymal stem cells as nuclear donors improve viability and health of cloned horses

نویسندگان

  • R Olivera
  • LN Moro
  • R Jordan
  • N Pallarols
  • A Guglielminetti
  • C Luzzani
  • SG Miriuka
  • G Vichera
چکیده

Introduction Cell plasticity is crucial in cloning to allow an efficient nuclear reprogramming and healthy offspring. Hence, cells with high plasticity, such as multipotent mesenchymal stem cells (MSCs), may be a promising alternative for horse cloning. In this study, we evaluated the use of bone marrow-MSCs (BM-MSCs) as nuclear donors in horse cloning, and we compared the in vitro and in vivo embryo development with respect to fibroblasts. Materials and methods Zona-free nuclear transfer was performed using BM-MSCs (MSC group, n=3432) or adult fibroblasts (AF group, n=4527). Embryos produced by artificial insemination (AI) recovered by uterine flushing and transferred to recipient mares were used as controls (AI group). Results Blastocyst development was higher in the MSC group than in the AF group (18.1% vs 10.9%, respectively; p<0.05). However, pregnancy rates and delivery rates were similar in both cloning groups, although they were lower than in the AI group (pregnancy rates: 17.7% [41/232] for MSC, 12.5% [37/297] for AF and 80.7% [71/88] for AI; delivery rates: 56.8% [21/37], 41.5% [17/41] and 90.1% [64/71], respectively). Remarkably, the gestation length of the AF group was significantly longer than the control (361.7±10.9 vs 333.9±8.7 days), in contrast to the MSC group (340.6±8.89 days). Of the total deliveries, 95.2% (20/21) of the MSC-foals were viable, compared to 52.9% (9/17) of the AF-foals (p<0.05). In addition, the AF-foals had more physiological abnormalities at birth than the MSC-foals; 90.5% (19/21) of the MSC-delivered foals were completely normal and healthy, compared to 35.3% (6/17) in the AF group. The abnormalities included flexural or angular limb deformities, umbilical cord enlargement, placental alterations and signs of syndrome of neonatal maladjustment, which were treated in most cases. Conclusion In summary, we obtained 29 viable cloned foals and found that MSCs are suitable donor cells in horse cloning. Even more, these cells could be more efficiently reprogrammed compared to fibroblasts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Para-Nonylphenol Impairs Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells by Influencing the Osteoblasts Mineralization

Objective(s)Para-Nonylphenol (p-NP) is used in many industries and our previous study showed that p-NP causes a reduction in rats bone marrow mesenchymal stem cells (MSCs) viability. The aim of this study was to investigate the effect of p-NP on osteogenic differentiation of MSCs.Materials and MethodsMSCs were isolated and expanded to 3rd passage, then cultured in DMEM supplemented with osteoge...

متن کامل

The effect of long term treatment of lowest effective dose of para-nonylphenol on viability, morphology and proliferation of rat bone marrow mesenchymal stem cells

Introduction: In this study, the effect of para-nonylphenol as an environmental pollutant on viability, morphology and proliferation of bone marrow mesenchymal stem cells was investigated. Methods: Bone marrow mesenchymal stem cells of rat were treated with the 0.5, 1, 2.5, 3.5 and 5 μM of paranonylphenol for a period of 21 days, then the viability of the cells were estimated using trypan bl...

متن کامل

Research Paper: Investigating Morphologic Changes and Viability of Rats’ Bone Marrow Mesenchymal Stem Cells in Microgravity

Introduction: Mesenchymal Stem Cells (MSCs) are multipotent cells capable of duplication and auto-recovery and distinction from various cells including chondrocytes, adipocytes, chondroblasts, fibroblasts, and osteoblasts. Human stem cells are always subject to local and external mechanical loads. External loads are caused by physical activity in external environment loading to infliction of st...

متن کامل

Sodium Arsenite Caused Mineralization Impairment in Rat Bone Marrow Mesenchymal Stem Cells Differentiating to Osteoblasts

ABSTRACT Background: Sodium arsenite (SA) recently has been recommended to be used in malignancy therapy. Our studies showed, SA in short and long period of treatment caused reduction of rats Bone Marrow Mesenchymal Stem Cells (MSCs) viability and induced caspase dependent apoptosis. The aim of this study was to investigate the effect of SA on osteogenic differentiation of MSCs. Methods: MSCs...

متن کامل

Calcitriol modulates the effects of bone marrow-derived mesenchymal stem cells on macrophage functions

Objective(s):Some evidence showed that calcitriol has an important role in regulating growth and differentiation of mesenchymal stem cells (MSCs). However, the interaction between mesenchymal stem cells and macrophage is not clear yet.  The current study was done to investigate the in vitro effects of calcitriol on the interactions between bone marrow-derived MSCs and rat macrophages. Material...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018